3.4.2 \(\int \frac {(3+3 \sin (e+f x))^2}{\sqrt {c-c \sin (e+f x)}} \, dx\) [302]

3.4.2.1 Optimal result
3.4.2.2 Mathematica [C] (verified)
3.4.2.3 Rubi [A] (verified)
3.4.2.4 Maple [A] (verified)
3.4.2.5 Fricas [B] (verification not implemented)
3.4.2.6 Sympy [F]
3.4.2.7 Maxima [F]
3.4.2.8 Giac [B] (verification not implemented)
3.4.2.9 Mupad [F(-1)]

3.4.2.1 Optimal result

Integrand size = 28, antiderivative size = 104 \[ \int \frac {(3+3 \sin (e+f x))^2}{\sqrt {c-c \sin (e+f x)}} \, dx=\frac {36 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {c} \cos (e+f x)}{\sqrt {2} \sqrt {c-c \sin (e+f x)}}\right )}{\sqrt {c} f}-\frac {6 c \cos ^3(e+f x)}{f (c-c \sin (e+f x))^{3/2}}-\frac {36 \cos (e+f x)}{f \sqrt {c-c \sin (e+f x)}} \]

output
-2/3*a^2*c*cos(f*x+e)^3/f/(c-c*sin(f*x+e))^(3/2)+4*a^2*arctanh(1/2*cos(f*x 
+e)*c^(1/2)*2^(1/2)/(c-c*sin(f*x+e))^(1/2))*2^(1/2)/f/c^(1/2)-4*a^2*cos(f* 
x+e)/f/(c-c*sin(f*x+e))^(1/2)
 
3.4.2.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.98 (sec) , antiderivative size = 125, normalized size of antiderivative = 1.20 \[ \int \frac {(3+3 \sin (e+f x))^2}{\sqrt {c-c \sin (e+f x)}} \, dx=-\frac {3 \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) \left ((24+24 i) \sqrt [4]{-1} \arctan \left (\left (\frac {1}{2}+\frac {i}{2}\right ) \sqrt [4]{-1} \left (1+\tan \left (\frac {1}{4} (e+f x)\right )\right )\right )+15 \cos \left (\frac {1}{2} (e+f x)\right )-\cos \left (\frac {3}{2} (e+f x)\right )+15 \sin \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {3}{2} (e+f x)\right )\right )}{f \sqrt {c-c \sin (e+f x)}} \]

input
Integrate[(3 + 3*Sin[e + f*x])^2/Sqrt[c - c*Sin[e + f*x]],x]
 
output
(-3*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*((24 + 24*I)*(-1)^(1/4)*ArcTan[( 
1/2 + I/2)*(-1)^(1/4)*(1 + Tan[(e + f*x)/4])] + 15*Cos[(e + f*x)/2] - Cos[ 
(3*(e + f*x))/2] + 15*Sin[(e + f*x)/2] + Sin[(3*(e + f*x))/2]))/(f*Sqrt[c 
- c*Sin[e + f*x]])
 
3.4.2.3 Rubi [A] (verified)

Time = 0.58 (sec) , antiderivative size = 124, normalized size of antiderivative = 1.19, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.321, Rules used = {3042, 3215, 3042, 3158, 3042, 3158, 3042, 3128, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \sin (e+f x)+a)^2}{\sqrt {c-c \sin (e+f x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a \sin (e+f x)+a)^2}{\sqrt {c-c \sin (e+f x)}}dx\)

\(\Big \downarrow \) 3215

\(\displaystyle a^2 c^2 \int \frac {\cos ^4(e+f x)}{(c-c \sin (e+f x))^{5/2}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle a^2 c^2 \int \frac {\cos (e+f x)^4}{(c-c \sin (e+f x))^{5/2}}dx\)

\(\Big \downarrow \) 3158

\(\displaystyle a^2 c^2 \left (\frac {2 \int \frac {\cos ^2(e+f x)}{(c-c \sin (e+f x))^{3/2}}dx}{c}-\frac {2 \cos ^3(e+f x)}{3 c f (c-c \sin (e+f x))^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle a^2 c^2 \left (\frac {2 \int \frac {\cos (e+f x)^2}{(c-c \sin (e+f x))^{3/2}}dx}{c}-\frac {2 \cos ^3(e+f x)}{3 c f (c-c \sin (e+f x))^{3/2}}\right )\)

\(\Big \downarrow \) 3158

\(\displaystyle a^2 c^2 \left (\frac {2 \left (\frac {2 \int \frac {1}{\sqrt {c-c \sin (e+f x)}}dx}{c}-\frac {2 \cos (e+f x)}{c f \sqrt {c-c \sin (e+f x)}}\right )}{c}-\frac {2 \cos ^3(e+f x)}{3 c f (c-c \sin (e+f x))^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle a^2 c^2 \left (\frac {2 \left (\frac {2 \int \frac {1}{\sqrt {c-c \sin (e+f x)}}dx}{c}-\frac {2 \cos (e+f x)}{c f \sqrt {c-c \sin (e+f x)}}\right )}{c}-\frac {2 \cos ^3(e+f x)}{3 c f (c-c \sin (e+f x))^{3/2}}\right )\)

\(\Big \downarrow \) 3128

\(\displaystyle a^2 c^2 \left (\frac {2 \left (-\frac {4 \int \frac {1}{2 c-\frac {c^2 \cos ^2(e+f x)}{c-c \sin (e+f x)}}d\left (-\frac {c \cos (e+f x)}{\sqrt {c-c \sin (e+f x)}}\right )}{c f}-\frac {2 \cos (e+f x)}{c f \sqrt {c-c \sin (e+f x)}}\right )}{c}-\frac {2 \cos ^3(e+f x)}{3 c f (c-c \sin (e+f x))^{3/2}}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle a^2 c^2 \left (\frac {2 \left (\frac {2 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {c} \cos (e+f x)}{\sqrt {2} \sqrt {c-c \sin (e+f x)}}\right )}{c^{3/2} f}-\frac {2 \cos (e+f x)}{c f \sqrt {c-c \sin (e+f x)}}\right )}{c}-\frac {2 \cos ^3(e+f x)}{3 c f (c-c \sin (e+f x))^{3/2}}\right )\)

input
Int[(a + a*Sin[e + f*x])^2/Sqrt[c - c*Sin[e + f*x]],x]
 
output
a^2*c^2*((-2*Cos[e + f*x]^3)/(3*c*f*(c - c*Sin[e + f*x])^(3/2)) + (2*((2*S 
qrt[2]*ArcTanh[(Sqrt[c]*Cos[e + f*x])/(Sqrt[2]*Sqrt[c - c*Sin[e + f*x]])]) 
/(c^(3/2)*f) - (2*Cos[e + f*x])/(c*f*Sqrt[c - c*Sin[e + f*x]])))/c)
 

3.4.2.3.1 Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3128
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[-2/d 
Subst[Int[1/(2*a - x^2), x], x, b*(Cos[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 3158
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_), x_Symbol] :> Simp[g*(g*Cos[e + f*x])^(p - 1)*((a + b*Sin[e + f*x 
])^(m + 1)/(b*f*(m + p))), x] + Simp[g^2*((p - 1)/(a*(m + p)))   Int[(g*Cos 
[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, e, 
f, g}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && GtQ[p, 1] && (GtQ[m, -2] || 
 EqQ[2*m + p + 1, 0] || (EqQ[m, -2] && IntegerQ[p])) && NeQ[m + p, 0] && In 
tegersQ[2*m, 2*p]
 

rule 3215
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_.), x_Symbol] :> Simp[a^m*c^m   Int[Cos[e + f*x]^(2*m)*(c + 
 d*Sin[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && EqQ[ 
b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] &&  !(IntegerQ[n] && ((Lt 
Q[m, 0] && GtQ[n, 0]) || LtQ[0, n, m] || LtQ[m, n, 0]))
 
3.4.2.4 Maple [A] (verified)

Time = 2.32 (sec) , antiderivative size = 112, normalized size of antiderivative = 1.08

method result size
default \(-\frac {2 \left (\sin \left (f x +e \right )-1\right ) \sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, a^{2} \left (6 c^{\frac {3}{2}} \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right )-\left (c \left (\sin \left (f x +e \right )+1\right )\right )^{\frac {3}{2}}-6 \sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, c \right )}{3 c^{2} \cos \left (f x +e \right ) \sqrt {c -c \sin \left (f x +e \right )}\, f}\) \(112\)
parts \(-\frac {a^{2} \left (\sin \left (f x +e \right )-1\right ) \sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right )}{\sqrt {c}\, \cos \left (f x +e \right ) \sqrt {c -c \sin \left (f x +e \right )}\, f}-\frac {a^{2} \left (\sin \left (f x +e \right )-1\right ) \sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \left (3 c^{\frac {3}{2}} \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right )-2 \left (c \left (\sin \left (f x +e \right )+1\right )\right )^{\frac {3}{2}}\right )}{3 c^{2} \cos \left (f x +e \right ) \sqrt {c -c \sin \left (f x +e \right )}\, f}+\frac {2 a^{2} \left (\sin \left (f x +e \right )-1\right ) \sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \left (-\sqrt {c}\, \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {c \left (\sin \left (f x +e \right )+1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right )+2 \sqrt {c \left (\sin \left (f x +e \right )+1\right )}\right )}{c \cos \left (f x +e \right ) \sqrt {c -c \sin \left (f x +e \right )}\, f}\) \(270\)

input
int((a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^(1/2),x,method=_RETURNVERBOSE)
 
output
-2/3*(sin(f*x+e)-1)*(c*(sin(f*x+e)+1))^(1/2)*a^2*(6*c^(3/2)*2^(1/2)*arctan 
h(1/2*(c*(sin(f*x+e)+1))^(1/2)*2^(1/2)/c^(1/2))-(c*(sin(f*x+e)+1))^(3/2)-6 
*(c*(sin(f*x+e)+1))^(1/2)*c)/c^2/cos(f*x+e)/(c-c*sin(f*x+e))^(1/2)/f
 
3.4.2.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 238 vs. \(2 (100) = 200\).

Time = 0.28 (sec) , antiderivative size = 238, normalized size of antiderivative = 2.29 \[ \int \frac {(3+3 \sin (e+f x))^2}{\sqrt {c-c \sin (e+f x)}} \, dx=\frac {2 \, {\left (\frac {3 \, \sqrt {2} {\left (a^{2} c \cos \left (f x + e\right ) - a^{2} c \sin \left (f x + e\right ) + a^{2} c\right )} \log \left (-\frac {\cos \left (f x + e\right )^{2} + {\left (\cos \left (f x + e\right ) - 2\right )} \sin \left (f x + e\right ) + \frac {2 \, \sqrt {2} \sqrt {-c \sin \left (f x + e\right ) + c} {\left (\cos \left (f x + e\right ) + \sin \left (f x + e\right ) + 1\right )}}{\sqrt {c}} + 3 \, \cos \left (f x + e\right ) + 2}{\cos \left (f x + e\right )^{2} + {\left (\cos \left (f x + e\right ) + 2\right )} \sin \left (f x + e\right ) - \cos \left (f x + e\right ) - 2}\right )}{\sqrt {c}} + {\left (a^{2} \cos \left (f x + e\right )^{2} - 7 \, a^{2} \cos \left (f x + e\right ) - 8 \, a^{2} - {\left (a^{2} \cos \left (f x + e\right ) + 8 \, a^{2}\right )} \sin \left (f x + e\right )\right )} \sqrt {-c \sin \left (f x + e\right ) + c}\right )}}{3 \, {\left (c f \cos \left (f x + e\right ) - c f \sin \left (f x + e\right ) + c f\right )}} \]

input
integrate((a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^(1/2),x, algorithm="fricas")
 
output
2/3*(3*sqrt(2)*(a^2*c*cos(f*x + e) - a^2*c*sin(f*x + e) + a^2*c)*log(-(cos 
(f*x + e)^2 + (cos(f*x + e) - 2)*sin(f*x + e) + 2*sqrt(2)*sqrt(-c*sin(f*x 
+ e) + c)*(cos(f*x + e) + sin(f*x + e) + 1)/sqrt(c) + 3*cos(f*x + e) + 2)/ 
(cos(f*x + e)^2 + (cos(f*x + e) + 2)*sin(f*x + e) - cos(f*x + e) - 2))/sqr 
t(c) + (a^2*cos(f*x + e)^2 - 7*a^2*cos(f*x + e) - 8*a^2 - (a^2*cos(f*x + e 
) + 8*a^2)*sin(f*x + e))*sqrt(-c*sin(f*x + e) + c))/(c*f*cos(f*x + e) - c* 
f*sin(f*x + e) + c*f)
 
3.4.2.6 Sympy [F]

\[ \int \frac {(3+3 \sin (e+f x))^2}{\sqrt {c-c \sin (e+f x)}} \, dx=a^{2} \left (\int \frac {2 \sin {\left (e + f x \right )}}{\sqrt {- c \sin {\left (e + f x \right )} + c}}\, dx + \int \frac {\sin ^{2}{\left (e + f x \right )}}{\sqrt {- c \sin {\left (e + f x \right )} + c}}\, dx + \int \frac {1}{\sqrt {- c \sin {\left (e + f x \right )} + c}}\, dx\right ) \]

input
integrate((a+a*sin(f*x+e))**2/(c-c*sin(f*x+e))**(1/2),x)
 
output
a**2*(Integral(2*sin(e + f*x)/sqrt(-c*sin(e + f*x) + c), x) + Integral(sin 
(e + f*x)**2/sqrt(-c*sin(e + f*x) + c), x) + Integral(1/sqrt(-c*sin(e + f* 
x) + c), x))
 
3.4.2.7 Maxima [F]

\[ \int \frac {(3+3 \sin (e+f x))^2}{\sqrt {c-c \sin (e+f x)}} \, dx=\int { \frac {{\left (a \sin \left (f x + e\right ) + a\right )}^{2}}{\sqrt {-c \sin \left (f x + e\right ) + c}} \,d x } \]

input
integrate((a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^(1/2),x, algorithm="maxima")
 
output
integrate((a*sin(f*x + e) + a)^2/sqrt(-c*sin(f*x + e) + c), x)
 
3.4.2.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 210 vs. \(2 (100) = 200\).

Time = 0.34 (sec) , antiderivative size = 210, normalized size of antiderivative = 2.02 \[ \int \frac {(3+3 \sin (e+f x))^2}{\sqrt {c-c \sin (e+f x)}} \, dx=\frac {2 \, {\left (\frac {3 \, \sqrt {2} a^{2} \log \left (-\frac {\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1}{\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1}\right )}{\sqrt {c} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} - \frac {8 \, \sqrt {2} {\left (2 \, a^{2} \sqrt {c} - \frac {3 \, a^{2} \sqrt {c} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}}{\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1} + \frac {3 \, a^{2} \sqrt {c} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{2}}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{2}}\right )}}{c {\left (\frac {\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1}{\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1} - 1\right )}^{3} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}\right )}}{3 \, f} \]

input
integrate((a+a*sin(f*x+e))^2/(c-c*sin(f*x+e))^(1/2),x, algorithm="giac")
 
output
2/3*(3*sqrt(2)*a^2*log(-(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)/(cos(-1/4*pi 
+ 1/2*f*x + 1/2*e) + 1))/(sqrt(c)*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))) - 8 
*sqrt(2)*(2*a^2*sqrt(c) - 3*a^2*sqrt(c)*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 
1)/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1) + 3*a^2*sqrt(c)*(cos(-1/4*pi + 1/2 
*f*x + 1/2*e) - 1)^2/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1)^2)/(c*((cos(-1/4 
*pi + 1/2*f*x + 1/2*e) - 1)/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1) - 1)^3*sg 
n(sin(-1/4*pi + 1/2*f*x + 1/2*e))))/f
 
3.4.2.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(3+3 \sin (e+f x))^2}{\sqrt {c-c \sin (e+f x)}} \, dx=\int \frac {{\left (a+a\,\sin \left (e+f\,x\right )\right )}^2}{\sqrt {c-c\,\sin \left (e+f\,x\right )}} \,d x \]

input
int((a + a*sin(e + f*x))^2/(c - c*sin(e + f*x))^(1/2),x)
 
output
int((a + a*sin(e + f*x))^2/(c - c*sin(e + f*x))^(1/2), x)